

Energy and Glucose Challenges During the Transition Period for Dairy Goats and Cattle

Larry Roth, PhD, PAS Minnesota, USA

Energy Balance of the Transition Cow

Transition Challenges: -3 weeks to 3 weeks Post-freshening

- Characterized by reduced feed intake and increased nutrient demand (Grummer, 1995)
- Glucose is needed for fetal growth, immune function, colostrum production, milk production, reproduction
- The major transition challenge for ruminants is inadequate blood glucose (Herdt, 2000; Rook, 2000)
- Glucose must be produced in the liver for ruminants
- The liver must have the appropriate glucose building blocks

39th Discover Conference The Transition Cow – From Physiology to Management

The Net Result is Tremendous Demand for Glucose

Dairy Production and Health is Dependent Upon Glucose Availability

The lactating cow prioritizes her glucose usage:

- 1. Basic metabolism
- 2. Immune function
- 3. Milk production
- 4. Reproduction
- ✓ Higher blood glucose post-fresh related to greater pregnancy at 1st breeding (Gaverick et al., 2013)
- ✓ Uterine health and involution

Pregnancy Toxemia and Ketosis

- Pregnancy toxemia: Insufficient glucose or inappropriate glucose building blocks pre-freshening
- Ketosis: Insufficient glucose or inappropriate glucose building blocks post-freshening
 >0.8 mmol BHB/I blood for goats
 1.2 – 2.9 mmol BHB/I blood for subclinical in cattle
- Adaptive Response to glucose shortage (Baumgard et al., 2017)
 - Glucose to fetal growth and milk production
 - NEFA and BHB to peripheral tissues
 - Insulin resistance
- Elevated NEFA and BHB related to variety of disorders (Dore et al., 2015)

Liver Glucose Metabolism in Ruminants

Low feed intake = low propionate production

Low propionate = Insufficient propionate to make glucose

Fatty acids oxidized to make Acetyl-CoA

Excess Acetyl-CoA results in NEFA and Fatty Liver

Excess Acetyl CoA makes BHB = Pregnancy Toxemia/Ketosis

Comparison of Blood Metabolites of Saanen Goats Pre- and Post-Kidding, Different Litter Size and Prima-parous and Multi-parous¹

Item		Pre-kid	lding	Post-kidding	
	LS	PRIM	MULT	PRIM	MULT
Glucose	1 2 3	$3.5 \\ 3.4^{a} \\ 3.5^{a}$	3.3^{AB} 3.2^{BCb} 3.1^{Cb}	3.2 3.2 3.2	$3.1 \\ 3.1 \\ 3.0$
Fatty acids	1 2 3	$0.29^{\rm b}$ $0.34^{\rm b}$ $0.35^{\rm b}$	0.37^{Ba} 0.47^{ABa} 0.57^{Aa}	$0.57^{\rm b}$ $0.64^{\rm b}$ $0.61^{\rm b}$	0.84^{a} 0.83^{a} 0.84^{a}
BHB	1 2 3	$0.18^{\rm b}$ $0.19^{\rm b}$ $0.20^{\rm b}$	0.22^{Ca} 0.25^{Ba} 0.33^{Aa}	$0.30^{ m b}$ $0.30^{ m b}$ $0.29^{ m b}$	0.44^{a} 0.45^{a} 0.48^{a}
PUN	$ \begin{array}{c} 1\\ 2\\ 3 \end{array} $	6.9 6.8 6.9	$7.1 \\ 6.9 \\ 7.1$	$7.8^{\rm b}$ $7.6^{\rm b}$ $7.2^{\rm b}$	8.7^{a} 8.6^{a} 8.1^{a}

¹Zamuner et al., 2020.

^{ab}Means within a row with different lowercase superscripts differ (P<0.05). ^{ABC}Means within a column with different uppercase superscripts differ (P<0.05).

Comparison of Low (<2.4 L/d), Medium (2.4 – 3.1 L/d) and High (>3.1 L/d)-yielding Saanen Goats on a Commercial Farm for Blood Metabolites^{1,2}

¹Zamuner et al., 2020. ²180-250 goats per group

Prevalence of Subacute Ketosis in Holstein Cows¹.

Histogram of prevalence of SCK in 1,717 Holstein dairy cows undergoing repeated testing for ketosis from 3 to 16 DIM. A positive test for SCK was defined as a blood BHBA concentration of 1.2 to 2.9 mmol/L.

¹McArt et al, 2012.

Relationship of Predicted Daily Milk Yield for the 1st 30 DIM and Blood BHB at 1st Positive BHB Test For Holstein Cows.¹.

Blood BHBA concentration at first SCK-positive test (mmol/L) Regression plot of mean predicted daily milk yield for the first 30 DIM by blood BHBA concentration of first positive BHBA test (1.2 to 2.9 mmol/L) for 369 Holstein dairy cows undergoing repeated testing for ketosis from 3 to 16 DIM. The solid line represents the best fit; 95% confidence intervals are shown for each predicted milk yield by BHBA concentration.

¹McArt et al, 2012.

Effects of Subacute Ketosis

- Depressed milk production
- Weight loss
- 3X more likely to be sold (McArt et al., 2012b)
- 2.6X more likely to have a displaced abomasum (Duffield et al., 2009)
- 3.4X more likely to have metritis (Duffield et al., 2009)
- 0.7X less likely to breed at first service (McArt et al., 2012b)

Ketosis Detection

- Any sick cow between 2 and 30 DIM should be evaluated
- Sweet smell of breath, presence of acetone, BHB Only 50% sensitive
- Cowside tests for ketosis

Blood – Precision Xtra hand-held system, 95% sensitive Urine – Ketostix test strips, >15 mg BHB/dI, 85% sensitive Milk – Ketotest test strips, not very sensitive, 90% sensitive

Nervous ketosis – continued and unresolved ketosis resulting in nervous activities

Prevention of Ketosis

- Reduce inflammation
- Feed for proper body condition pre-freshening
 - Diet <15% maize to produce propionate or lactate
- For goats, group and feed by litter size?
- Safely optimize energy intake post-freshening
 - Diet 15-25% maize to produce propionate or lactate
 - High-quality forages
- Feed rumen-protected choline chloride post-freshening
- Avoid too much bypass fat feeding

Ketosis Treatment

Mild or moderate (1.2 – 2.9 mml BHB/I blood) -300 ml propylene glycol and glycerol/cow/d until resolved

-Oral administration of jaggery

Severe (>3.0 mmol BHB/I blood) -IV 500 ml of 50% dextrose

-Dexamethosone and glucocorticoids

Ketosis Summary

- Prevention is key
 - -Proper body condition
 - -Feed to provide correct energy
 - -Reduce inflammation, stress and disease
 - -Special care for high-yielding animals
- Treatment plan in place
 - -300 ml propylene glycol

-Jaggery

-Dexamethsone